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ABSTRACT

A very successful theory of quasilinear evolution equations, which

applies to many problems of mathematical physics, has been developed by

T. Kato. The theory obtains solutions of quasilinear problems via contraction

mappings which are defined by means of a theory of linear evolution equations

also developed by Kato. In the current work we show how the existence and

continuous dependence theorems obtained by Kato can be proved by

discretization in time. As opposed to earlier work in this direction, the

current results are much sharper concerning the continuity properties of the

solutions of the discretized problem and the strength of the norms in which

they converge., 
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CONVERGENCE OF DIFFERENCE APPROXIMATIONS OF

QUASILINEAR EVOLUTION EQUATIONS

*Michael G. Crandall and Panagiotis E. Souganidis

We are interested in the quasilinear initial-value problem

du + A(u)u _ 0,
dt

(1)
u(0) = (p,

in which A(u) is a linear operator in a Banach space X for each u belonging to a

subset W of X. T. Kato has studied (1) in (8) and [9]. He obtained the existence of a

classical solution under assumptions detailed in Section I and showed the relevance of

these assumptions by applying his theory to a wide variety of problems from mathematical

* physics. The main goal of this paper is to show that, under these assumptions, the

existence theory for (1) can be obtained very directly by showing that the simple

difference approximation of (1) given by

+ A(u (t-X))u (t) - 0 for 0 < t 4 T,

(2)X

u (t) - * for t 4 0,

is solvable for u (t), 0 < t 4 T (for appropriate X and T), that

(3) lim ut) - u(t)

IC'. exists uniformly on 0 4 t 4 T and the u so obtained satisfies (1) in the classical

sense.

Results in this general direction were obtained in (5] (which is not going to appear

in the periodical literature). See also [7). The current work sharpens the results of

[5] as applied to (1) in several ways: By restricting attention to (1), the presentation

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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is clearer. We give a simpler proof of the convergence (3) and the proof of the existence

of uX solving (2) is given under different assumptions than in [5]. Finally, and this

is the point we emphasize, the convergence in (3) is shown to be better than in [5]. This

is of numerical interest and the proof allows the current line of attack to obtain the
sharpness of some of Kato's results that was not previously matched by this method.

S. .% Kato's approach to (1) and its generalizations involves obtaining sharp results for

S ,linear problems of the form

(4du + B(t)u- 0dt

.44.

and then using these with a contraction mapping argument to solve (1). (For a current

account of the state of Kato's theory and more references to other approaches, we refer

the reader to (10] and its bibliography.) Our approach to solving (1) does not require a

preliminary linear theory - not even the Hille-Yosida theorem. Indeed, the solvability of

(2) under hypotheses of Kato's type is proved in a straighforward fashion and the

convergence (3) follows from standard elementary estimates of "nonlinear semigroup

theory". We will rely on the form given these standard estimates in [31, but other

approaches work as well (e.g., [111, [13]). This direct attack on (1) is carried out in

Section 3. However, there is ample reason to study (4) by our methods in any case, and

this is done in Section 2. It is also a simpler matter to show the optimal convergence of

the uX if one has appropriate results for (4) in hand, and the arguments in the case of

(4) exhibit clearly several main points which can then be briefly treated in the case of

(1). Hence we have organized the presentation by discussing (4) before (1), as is the

comon practice. The interested reader can take up Section 3 before Section 2, and if he

does so he will quickly obtain an existence result for (1) which asserts a little less

than both optimal regularity of u and optimal convergence in (3). To obtain these sharper

results we have relied on Section 2. The main results concerning (4) are given in Section

2 and state that, under hypotheses of Kato's type, (4) has a unique solution which may be

-2-I
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computed as the limit of solutions of simple difference approximations to (4), and these

approximate solutions converge in as strong a sense as is possible. Section 1 collects

some preliminaries, notations and precise formulations of the results. Of course, there

are many variants and generalizations possible, and we comment on some of these following

the proof of Theorem 2 in Section 3. In the final Section 4 we briefly sketch how one

would prove (known) results on continuous dependence in this setting.

The authors are grateful to R. Pego for useful discussions about this work.
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Section 1. Preliminaries and Statements of Results

Let bea Baachspac. W use I I to denote the norm of Z, as wall as the norm

of elements of BMZ) (the bounded linear selfmaps of Z). If is a real number, we

denote by ?4CZ,) the set of densely defined linear operators C in Z such that if A > 0 and

.- .d

A6 < 1, then (I + AC) is one to one with a bounded inverse defined everywhere on Z and

1(1 + AC)
1 

I Z4C o - O)
1

Here and below we use "I" to denote various identity operators depending on the context.

The Hille-Yosida Theorem - which we will not need in this work - states that C e N( d-)t"

exactly when -C is the infinitesimal generator of a strongly continuous semigroup e ,

o t, on Z satisfying ,e'tZ e for 0 t.

More generally, if C is a (possibly) nonlinear operator C from its domain D(C) C Z

into Z with the property that I + AC has a well defined inverse (I + AC) "I on the range of

I + AC with (1 - AS})" as a Lipschitz constant provided that A > 0 and A8 < 1, then we say

that C + 01 is accretive. We recall a simple bin about accretive operators that we will

have occassion to use. A proof can be found in (3] or [11].

Lemma 1. Let S e R, C be an operator in a Banach space Z and C + 8I be accretive. If

y, 5 > 0 and y8,66 < 1, and z,;,w,w e D(C), f,g e Z satisfy

Z Z + Cz -f, + Cw- g 
Y -

then

(1- I-)z - w -iz - wi + Y 1z - I + If 91
+6Z Y+6 Z Y+d Z Y+8

Throughout this paper, X and Y are Banach spaces which have properties we call :."
MX:

(X) X and Y are reflexive and Y is continuously and densely imbedded in X.

The operator norm of a bounded linear mapping C:Y + X will be denoted by ICI y. If

-4-
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S..

T > 0, the met of continuously differentiable mappings fi [0,T] + X will be written

CI[0,T:Xl and C[O,T:Y] denotes the continuous maps into Y, etc..

In most of this paper X and Y will be related via a linear isometric isomorphism

S:Y * X. We denote this condition by (S):

(S) StY + X in a linear isometric isomorphism.

We next formulate our results in the case of the equation u' + A(u)u - 0. Concerning

the operator* Mu) we assumes

(A) There is a ; o 0, an open subset W of Y and a mapping A:W + N(X,B). '

The next assumption restricts the domain D(A(w)) of A(w) and the joint continuity of

"Alu)v".

For every w e W, Y C D(A(w)). Moreover, there are constants VA, YA such that

(A2) for u, u W and v 9 Y

IO(u) - A(u))vIx l vAlu-u xlvni and IA(u)vl X 4 lviy .

The next assumption is more subtle:

There is a mapping P:W + B(X) and a constant Yp such that

(i) SA(w) - Aw)S + P(w)U for w e W,
4 (A3)

and

(ii) ,P(w)x I- for w W. W.

The assumptions (Al) - W) will suffice to guarantee the solvability and convergence

of the scheme (2) to the classical solution of 1). However, we will obtain sharper

, .' ,''

" 
-5-
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convergence results under the further restriction

(A4) There is a Up such that IP(u) - P(u) 1 C |u - u|¥ for u, u e w.

Kato (8] has shown the relevance of these assumptions by exhibiting many important

examples which enjoy these properties. We will prove:

Theorem 1. Let (X), (S), (Al), (A2) and (A3) hold and ( e6W. Then there are

T,A 0 > 0 such that there is a unique finite sequence xi, i - 0, .. , N, in W which

satisfies

xi -xi_
1i + A(xi_1)x

i  0 , i 1 1, .. ,N

X04
(i1.1i

provided that 0 < A 4 A. and T C NA 4 T + X. Moreover, if uA(t) is defined by

u ,(0) - (P and

(1.2)
u (t) - xi for (i-I)X < t C iX and i 1 I,...,N

then

(1.3) laE u .(t) - u(t)
X+O

* exists in X uniformly on 10,T] and the function u so defined is continuously

differentiable into X, continuous into Y, satisfies u([0,T]) C W and

(1.4) u'(t) + A(u(t))u(t) - 0 for 0 4 t 4 T.

If (A4) also holds, then the convergence in (1.3) holds in Y uniformly on [0,T].

Remarks. The description (1.2) of uX coincides with the scheme (2) (which produces

piecewise constant functions). The assumptions (Al) - (A4) are an amalgam of conditions

used by Kato in (81 and [9]. (A4) was used by Kato to establish strong results concerning

the dependence of the solution of (1) on A and 0, and its role in our work is related to

this. In (8) Kato imposed an extra condition which was also used by us in (5] to obtain

the existence of uA . This was dropped in (91 and is now dropped here. (However, one can
relax (A3) if this extra condition is imposed - see (2, Section 4] for a simple account.'p
* -6-±1
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This work obtains the existence of u e Cl[O,TX](C[O,T:Y] solving u' + A(u)u - 0,

=u() - 0 via the scheme (1.1). This sharpens the result of [5] which, under somewhat

different assumptions, produced only a Lipschitz continuous function. If one takes the

existence as given via Kato, then our main result is the fact that the solutions of (1.1)

converge so nicely to Kato's solution.

As was mentioned in the introduction, we will first study the associated linear

problem u' + B(t)u - 0. The assumptions on B(t) parallel (Al) - (A3) above.

(BI) T > 0 and there is a a ; 0, such that B(t) e N(X,O) for 0 4 t < T.

(B) Y C D(B(t)) for 0 4 t 4 T and the mapping [0,T] -t B(t)ly (the

restriction of B(t) to Y) is continuous into B(Y,X).

There is a strongly measurable mapping D: [O,T] + B(X) and a constant YD

(93) such that

SB(t) B W(t)S + D(t)S and RD(t)Ex( <D for 0 4 t < T.

Before formulating the result in this case, we recall a standard lemma which is often

used in the sequel.

Lemma 2. Let (B) hold, C e Nm(X,), Y c D(C), P e B(X), and SC - CS + PS. Set

8 -0 + IPIx . Then for every y e x and X > 0 such that X8 < 1, the problems

(1.5) x + ACx - y ,J

and 0

(1.6) x + A(Cx + Px) = y

have unique solutions x and x in X. Moreover

(1.7) 1x11 X (1 - X8)-1ylx and Ixl x ( (1-<,l-A 11yl x

-7- %i
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i and if y e Y, then x e Y and

,% (1Y exl O (-Xe)'lyly •

! Prof. The unique solvability of (1.5) and the estimate

~-1

i (1.9) 1Il 4 (1 - XS)-llylx

. are by definition of N(X,B). We have weakened (1.9) to the first estimate of (1.7) for

" later convenience in writing. The assertions concerning (1.6) are standard perturbation

remarks, and can be deduced easily and directly from the unique solvability of (1.5) with

the estimate (1.9). (We leave it an an exercise for the reader who may not be familiar

with the perturbation results.) if y e Y in (1.5), write y - Sy, apply S to (1.5) and use

the assumptions to arrive at the equivalent problem ; + X(Cx + P;) ; for ; - S.. The

auxiliary assertions in the case y 6 Y then follow at once from the case just discussed

and the assumption (S).

!we will abbreviate the information contained in Lomma I when it applies by writing

. ~I(I+Ac)lZ 1 (1O-Xel-for Z - X or Y and I(I+X(C+P)I-) 1 O-XS)
-

C. X

~with appropriate choices of C and P.

.,-{o -t o 4 tj 4 .... 4tN- T

r Tbe a partition of [0,T]. The mash size mI) of V is the largest stop ti - til,

1 , ...,N. If (B) -(B3) hold, 0 + Yo, mlP)O < I and cp e X, then Lemma 2
guarantees that the scheme

% ' Xl"_ i'1+ B(ti)x, 0, 1 1 ,...,N,
t% .' t

'.4

is uniquely solvable. Indeed, the solution is given by iterating

teeia xi as + (ti-tisf)B(ti))- xib1

in to find - )alJJ-1 -

I(I).) ((1AS fo Z (I K or(t n II-(+P) I (-_)1

%z
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U' .

where the product (and all others in this paper) is "time-ordered". More generally, given -

'p a partition P as above, with a sufficiently fine mesh, we set

n
U (ts) - t (I + (t - t -

01.11) pJ-M 
"-J-1-

for t 4 a < t and t < t t

with the understanding that UP(t,t) - I for 0 4 t C T.

Theorem 2. Let (X), (S) and (BI) - (B3) hold and x S X. Then the limit

(1.12) lim UP(t,s)x - U(ts)xM(P)+0

exists uniformly in X on A - {0 a 4 t C T) and defines a strongly continuous mappin,

U(t,s) from A to B(X) with the property that if P 6 Y and u(t) - U(t,s)(P on s 4 t 4

then u 6 CI[s,T:X](Cts,TsY], u(s) - a and u'(t) + B(t)u(t) - 0 for s C t f T. If,

moreover, D(t) in (B3) is strongly continuous into B(X) and x S Y, then the limit (I..

is uniform in Y.

The proof of Theorem 2 is given in Section 2. Here we will be interested in the

following cozollary of Theorem 2.

Corollary I. Let P(n) - (0 - tn C tn C...4 (n) " T} be a partition of (0,T) for

n - 1,2 ...... . Let xn, fn 6 X for i - 1,...,N(n) and f I LI[0,T:X] (the strongly

integrable functions from (0,T] to X). Assume that

M(n) t n

lim m(P(n)) - 0 and lim ) j n If - f(t)tdt = 0.

ti i

Let

+ B(tn)x " fn for i I .... N(n),

(1.13) tI n t n. 1

x0 i0,

and un~t) - xl for t. 1 < t C t . Then

-9-
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(1.14) lim un (t) - U(tO)p + J U(t,s)f(s)ds.

in X uniformly on [0,T].

-. Proof of Corollary 1. It (1.13) is solved explicitly, one finds]

t 
n

(1.15) un(t) = U (nt,O)cp + ji for ln < i'nn (t'.), + iUp n' is)f n sds for t

P(n) i UPWn ti5f) i-I0

where fn(_) - f on (t . 1,t]• It is an elementary matter to use the convergence asserted

for Up in Theorem 2 and the assumed convergence of fn to f in LI to pass to the limit in

(1.15) to find (1.14), and we leave it to the reader to supply details as desired.

.4o
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SECTION 2. The Linear Came

We begin the proof of Theorem 2. The proof is broken into four steps.

Step 1 establishes the convergence of Up to a limit U. Step 2 establishes properties of

U. Step 3 proves that u(t) - U(t,Oh(P is continuous into Y for (p e Y and the final Step 4%

proves that the convergence holds in Y.

Stop, I The convergence of UP

Let us begin by remarking that this step involves only routine arguments and could be

deduced from various references, but we give it here for completeness and later

convenience. We assume that (B1) -(B3) are satisfied and let

(2.1) e 6 + Y 'V

When X. > 0 and )A8 < 1, Lemma 2 and the assumptions imply that the operator

4 (2.2) JAWt (I + )(t)) 1

satisfies

(2.3) NJ (t0I 4C (0 Ae) for z e fX,r}

Hereafter we will always assume that whenever we use an operator JAWt then X. is positive

and satisfies Ae < 1/2, in which case the elementary inequality (1 - )-1 e2 AShod

S. and (2.3) implies

(2.4) IJt) W e 2Xfor Z e S Y
X~ z

In particular, with this implicit restriction on m(P), it follows that

*(2.5) IU Ct's)1I . I T1 J t t Ct )l H I e6
*j-m j J-1 J-M

where the notation is that of (1.11) and Z is either X or Y. We will also assume the mesh

S of every partition we deal with is at most 1.

Let

P (0 to 4 tj ... 1 tN T), P {O so 4 8 1 4- ... M T)

be a pair of partitions. Fix s e (0,T) and choose io, Jo according to

-(2.6) i 0 s a < 8, and t J0. 1 4 a < tio

Next choose (p e Y and put

*~%
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(2.7) Yi - U;(si's)o, xj -Up(ts)p,, - si_ 1 and 8j - tj -tj. 1.

The the proof will proceed by estimating the numbers

.(2.8) aij- y - x lx . u(isy- O p(tjs)ylx

for i0 4 1 and jo 4 J. Indeed, the a, j satisfy certain inequalities which allow us to

estimate them in a standard way.

First, observe that by (2.5)

(.12.9) Ix i I y, ly I .K 1 K1I01y

where we introduce the practice of denoting by Ki a constant which may be estimated in

terms of the "data"

(2.10) T, 6, YD' and YB,

which includes the constant

(2.11) B - max IB(t)I

which is well defined by (82). For example, in this case we may take K1  •2(T + 1)6.

% , 4 We begin by estimating ai,j for i0 4 1. To this end, first observe that for y e Y

(2.12) iJA(t)y-ylX - IJA(t)(Y-(y+XB(t)y))Ix . 1(t)I XAIB(t)yl K2 Xlyl ¥y

Now, by definition,
i--.. . . %. ;q'.j eJoa n 1i J] (s.)0o - J6J (t Jo) OIx

id0 1-i 1 0Oj

so, using the triangle inequality, (2.5) and (2.12) we first find

ai,J0 < I(P - J (t )) +E I n J (a9)( (- (S) I

00 0 k-i0  -k+l p

'N and then

(2.13) a 1 1  (8( +E% 10  K (6j0+ " a I0_+)aj0 < 360 + k-i l 0 03 0~ y

Similarly, if JO 4 j

-- (2.14) ai, K3 (yi0 + tj - tj 1 ) I0P1y.

Next observe that, by definition,U -12-

14 .



Yi 
+ YiB(Si)yi Yi-f

and, writing it in a complicated way,

xi + 6jBleilx j - xj.j + 6j(B(4i ) - atj))Xj.

Since B(si ) + 81 in accretive, the above relations and Loma I imply that

- 1 )'' I Y x 1 _. 6, xlx I*
Y +8 1 x Y +8j 1-1"

+ yI+ Y lBi - Bltl)) x I
Y~~ 1 +6 1 ± i j X

Moreover, using (2.9), (

1 u(S~si - (t ))x 1I 4 I4 lIB(Si B(t )I

so we have

8 8i
(ip a +. a 1 +

. j' i j i,

(2.15) 8

-~ + -~i-4x4 I1v*BIsiI - ~ at)Iyx
N.-4 iiYx

The results of (3] imply that for e > 0 we can guarantee that

ai,j ( w(C,n) + e for si_1 4 E 4 si, tj_ I 4 n ( tj

and i0 ( 1, J0 
4 J, as soon as m(1) and m) are small, where w is the solution of the

simple boundary-value problem

w +w - Ow - K4UPIyIB(C) - B(n)IYX for a 0( n 4 T

and

w(En) - K2 ((C - 8) + ( - ))1I if E - s or n - a,

given by integration along characteristics. While we could write the formula for w, it is

enough to know that w is continuous and w(E,C) - 0 for a ( ( T. In particular

IUP(ts)P - U.(t,s) pI 4 w(t,t) + C -
P x

4 as soon as m(P) and m(i) are sufficiently small. We conclude that

-13-
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lim U (t,s)( - U(t,s)(
(2.16) m(P)0

exists in X uniformly on A. Since UP(tjs) is bounded in B(X) and Y is a dense in X, the

limit in (2.16) exists uniformly if i0 e X as well, and U:A + B(X).

Step 2. Properties of U

We now establish simple properties of U. If 0 4 r < a < t C T, we may choose any

partition of (0,T] with each of r,s and t as partition points and see that

,J Up(t,r) = Up(ts)Up(s,r)

and, in the limit,

(2.17) U(t,r) - U(t,s)U(s,r).

We next establish continuity of U in (t,s). Let P be a partition and t - tj be a

point of P. As in the proof of (2.13) one sees that

|UP(t,0)0 - P1X " I T01 8 tk) - (PI14 K5 (81+...+6J)I
w lY - K5t(PIY

k.0 k

so, in the limit,

(2.18) IU(tO)(p - (|X c Kti|.

The relation U(t+h,s) - U(t+h,t)U(t,s) for 0 4 s 4 t C t+h 4 T and the above estimate

leads to
-

1i IU(t+hs)V-U(ts)(1x " U(t+ht)U(ts)(p-U(ts)p 1X K5hIU(t's)(lyCK6 hlly

since the restriction of U to Y is bounded in B(Y) by (2.5). In a similar way we see that

U(t,s)o is Lipschitz continuous into X as a function of a for v e Y. Since Y is dense in

X, we obtain that U(t,s)x is continuous in (t,s) into X for arbitrary x e X.

Let v e Y and consider u(t) - U(t,0)(p. We want to argue that u([O,T]) C Y and u is

weakly continuous as a Y-valued function. But this is obvious, since u is the uniform (in

X) limit of the functions Up(t,0)V which remain bounded in the reflexive space Y. It is

also clear that any function which is bounded in Y and continuous into X is weakly

continuous into Y, and UP(t,0)D converges weakly to u(t) in Y as m(P) + 0. It now follows

from (02) that the function B(t)u(t) is weakly continuous into X and hence strongly

-14-
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integrable. If the points of P are tj, the relations

xj - xji - (tj - tl.I)Bltj l

satisfied by xj - U(tj,O)( imply, upon summing,

U (t ,O)(- - j (g(s))U (0)s,Ods
P 

0
where gp(s) - tk on tkl < t 4 tk . Choosing partitions P which have t - tj as a partition

point, one easily verifies - using (B2) and the above remarks - that the right-hand side

of the above relation converges weakly (in X) to the right-hand side of
t

(2.19) U(t,0)(P - (- I B(s)U(s,0)pds
0

and it follows that (2.19) holds and u(t) satisfies the equation u'l(t) + 8(tlu(t) - 0

almost everywhere. The weak continuity of B(t)u(t) then implies that the equation holds

weakly everywhere. Once we know that u(t) is continuous into Y so that B(t)u(t) is

continuous into X, it will follow that u S CI [0,T:X] and the equation holds classically.

Step 3. Continuity into Y

We wish to establish the strong continuity of u(t) - U(t,0)o into Y. It is
.%

equivalent, by (S), to show that Su(t) is continuous into X. The above remarks show that

Su(t) is weakly continuous into X and thus it is strongly measurable. By (B3) we then

have that D(t)Su(t) is bounded and strongly measurable and therefore strongly integrable

(in X), and then so is s + U(t,s)D(s)Su(s). The proof will proceed by showing that

t
. (2.20) Su(t) - U(t,0)SV - I U(t,s)D(s)Su(s)ds

0
from which it is obvious that Su is continuous into X.

Since D(t)Su(t) is strongly integrable in X and u(t) is strongly integrable in Y,

there is a sequence of partitions

P(n)- {0= tn tn < ...... < n T}

such that m(P(n)) + 0 and

t nN(n) t N(n) t n

N~n U~t)u~)~(tn )SU(tn )Idj i n Eu~t)_u(tn),d=
(2.2'~1) lim ~ n jDtSUt- )Ijx l I in .5 0

The scheme

-15-
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i n in

tL x ii 1 + B(tin )x n 0, 1 2....N(n),n n; ---

(2.22) t± ti-I

has the solution un(t) - Up(n)(tO)O where un(t) - x on (t .- tn. Consider the

auxiliary scheme

Ein in-n n
n . + B(t Izi - D(t)Su(t1 ), = . . . ~ )

~V*.t -t
(2.23) i j

• iini z o- s~o

which defines the values of the piecewise constant function zn(t). By Corollary 1 and

(2.21)
inw t

". '~lim z t) - U(t,0)SP - J U(t,s)D(s)Su(s)ds
n- 0

holds in X uniformly in t. Define z(t) - lim zn(t). Next we show that a(t) - Su(t). To
,.-1nn

-, this end, set vn(t) - S znt). The values vi of vn(t) satisfy - using (2.23) and (B3) -

It n

L l + vSO - s D(t'n)Svn -S D(t i)S(tnl

n n
v 0

Since zn converges as above, vn converges in Y uniformly in t to a continuous function

v(t). We are done upon showing that v - u. Using (2.24), (2.22), (B1) and Lemma 2 we

find

+ (tn _ ti_,)HS-1 (D(t in)SU(t ) in D(t n'Svn)iy

n n)

S(t - ti

in inyt

q'- 4 
4I +tniiI i- + - n)YDU(ti ) - Y)'

Iterating this yields

2-1
-16-
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(2.25) IV (t) P u n (t I )IY 49 0 YD( I In ut) v elda).

. .- -l t- - v ()
k-1 -1

Since vn converges in Y uniformly and un converges weakly in Y and (2.21) holds, we may
*.4

take limits In (2.25) upon appealing to the lower semtcontinuity of the Y-norm with

respect to the weak topology to conclude that
t

(2.26) v(t) - ut)Iy < aeYD j u(s) - v(e)Iyds for 0 4 t 4 T.
0

Since Iv(t) - ut)I is integrable, this implies that ut) vt) and we are done.

Stop 4. Convergence in Y

We now impose the condItion that D(t) is strongly continuous. since we established

above that u(t) - U(t,0)0 0 COT:Yj, the relation (2.21) holds for an arbitrary sequence

of partitions P(n) satisfying m(P(n)) + 0. By the analysis of Step 3 we conclude that if

P - {O - to < .... <t - T) and a1 is the piecevis, constant function on P whose values

are given by

S i1 + B(ti)ri + D(t )Su(ti) - 0,
t. t -1

(2.27) 1i-1

then z. + Su uniformly in X an m(V) + 0. To show that UP(t,O)4P converges in Y we need to

show that wp(t) - 5Up(t,O)(9 converges in X. The value. wi of w1 are given by

wi -v£"Wi- + Blt )wi + Dlt lw,= 0

(2.28) t£- tii

wo - s(..

4. . Rewriting the relations (2.27) as

i I i-i
ti - t 1  + B(tz)si + D(ti)s i - (tti)(Z - Su(ti))tI -~ 1

and using (2.28) and the accretivity of B(ti) + D(ti) + el, we find20(t
i - ti. 1 )

x  • i--I z 1 I X +

• - + (t i - t i1 )D(t )(Z " I- u(t I))lx).

-17-
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Iteration of this inequality yields

(2.29) I - C YD (tk tkllkUt)Iz)
k I

* Since zp. Su in X an =(P) + 0 and Su 6 CEO,TsXI. the right-hand side tends to zero am

3(P) + 0. We conclude that w, z. + 0 in X uniformly as m(P) + 0 and so w. + Su as

clp'med.
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Section 3. Proof of Theorem I
The proof os again broken into four pieces, and (U) is invoked only in the fourth

, part. In Stop I we show that the scheme

-0, i-i..1

x 1 A(X i 0, 1 1 .... N

(3.1)
x0"x

0
%

is solvable and obtain some appropriate estimates along the way. In Stop 2

we show that if

(3.2) uX(t) - xi on ((i-1)AiA], uX(O) -

then the limit

(3.3) lim uX(t) - ult)
N+O

exists in X uniformly. Moreover, in this step it will be proved that the limit is a

solution of the evolution problem in a strong - but not quite classical - sense. Up to

' this point, the results of section 2 will not be used. In Step 3 it is shown that the

limit u in (3.3. lies in C[0,TsYl and for this we will rely on the results of Section 2.

In Step 4 we demonstrate that the limit in (3.3) exists in the topology of Y.

step lI Existence of uk

We will now discuss the solvability of (3.1). To this end let (p 6 and

(3.4) d(P = inf {P - v : v e Y\W}.

be the distance in Y of (p to the boundary of W. We have:

N. aLema 3. Let (Al) - (A3) hold and

(3.3) e- + Yp.

Let T ) 0 satisfy
! I

(3.6) nf ((l+e 2 0 )U p-z x + T(YAf1zIY + YP lzIX) < d
zeY

19
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i Then there is a X0 > 0 such that for 0 < X 4 )L there is a unique sequence xi ,
~i - 0,..., N, in W satisfying (3•1) and T 4 NA 4 T + X.

Proof. The desired relation between xi  and xi. I  given by (3.1), can be, if X > 0 and

i Ae < 1, rewritten as

(3.7) xi - (I + WAx i_1)) -I1

By Loinsa 2, xi e Y in uniquely determined by (3.7) so long as xi_ 1 e w. We thus seek to

.estimate lxi-4OI¥  and keep this below d0 since the open Y ball centered at (p of radius

d ( lies in W. Assuming xi. I e w, we put wi - sxi , wi. I  Sxi_ I and operate on (3.1)

with S to obtain - via WA)-

(' 3.8) wi + XlA(xiIW i + Plx i  )Wi -wi_

Choose z e Y. We have ,

(3 9 i  - z + A Ai-1 lW i- Z) + Plx i Il)W i -  zl))

wi_ -Z - XlAlXi )l + PlXi~l)

i Using Leams 2 in conjunction with (3.9) we obtain

(3.10) Iw i - zl X (10-Xe)l'IllWll-z1Jf+ M(YAIzl¥ + YPIZlx)

Again we assume that X9 < 1/2 so that (I - XO)-I  e2xe everywhere below. Then we can

iterate (3•10) to obtain "

21XO

1w i-zI x -C e i e ( st0-z I x+AX( YA IsIy+yplZ IX) ).,

(recall w0  Sx0  Sip). This further implies

( 3.•1 1) 1wi -s (Px 4 ( 1+e6 ) ( |S(-Z +i k( Y s|~p| X) )

By (3.5) and considerations of continuity we can choose a > 0 and z e Y such that the '

right hand side of (3.11) is less than do( if iX 4 T + a. Set X 0 - main (a,I/2e)• By '

what we have shown (35) implies the existence of an r < d so that for 0 < X Xj and

T NX T+A, one can solve (3.1 ) and T

(3.12) x e By(r,p)x- {v e Y lv-(l r) for i 1,...,N.

Remark. In contrast with t5] belhave used the full force of bal) here. This is because

we do not assume any bounds on expressions like |A(w)y i in this case. a.'

-20- .

Choos e -r 6 r. hv

. w.1 .-e - ACCI ) % ~i~)

'.~~ .
t

Cs1) 61 <

i x ±1~lx A(Y~atY Y~Iax))



• 45" rKW KWX "6Q t

~Stop 2: Convergence of uk

For the rest of the discussion, r in fixed at the value above.

% 'Loma 4. if x, x e By(r,tp) and pK 8 be an in (A3) and (3.5) respectively. Let

'.

(3.13) + + U (I(fy+rj.

iif 0 < A, AX < 1 and

x + A ~~ -A

(3.14) x + A(x)x - Z, x + XAx)x z

then 1

(3.15) Ix - Xl IC (I-A*) Is - :1

Before we give the simple proof, let us explain why Lemma 4 and standard results

establish Step 2. The conclusion of Lemma 4 is that the mapping By(rp) D x + A(x)x + *x

is accretive. That is, if C(x) - A(x)x for x e D(C) - B (r,(P), then C + +1 is

accretive (in X) according to Lema 3. It is known that if C + *1 is accretive in X

for some # and for each small A > 0, xi'e are given so that x. e D(C) and

xi  - xi _1A + C(xK) z i for i w 0,1,...,N with T 4 NX 4 T + A,

(3.16) V

A e i NX * 0 as A + 0,

then the uk(t) given as xi on ((i-I)A, iA] converge uniformly on [0,T] in X to a

Lipschitz continuous u @ C[O,TiX]. This is a basic result of (21 when

* - 0, i - 1,...,N. In our case we have, with the xi's of Lemma 3, and C(x) - A(x)x,

% xi 1
A + C(xi) (A(xi) - A(xi))xi

4.1 so, by (A2),

Ieilx - i(A(xi - i-I))xilx Ie' lxi-xix1  Xil •

'- c~ By xi-xi. 1 - AA(xi-I)xi and (A3)

-21-
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Sx Ilx C XYAIXil¥ 4 xA(I(Ply+r)

and thus I I x c CA. It follows that for some constant C1
N

A lI I -C C IC(x). C I (T+A) A +a as A~ 0.

The convergence of uX when Ic I + 0 uniformly in i as X + 0 is a simple extension of

S[2]. More generally, the results of (1] or Kobayashi [11] or Takahashi (13], or Crandall

and Evans (3] can (as we have already done in Section 1) be applied. Indeed, from these

works one has an error estimate of the form

lux(t) - ultlI x e CICI(T + AIX + /1AI IP|x)

'P" where C depends on T and *.

Proof of Lamia 4. Forming the difference of the relations (3.14) and rearranging suitably

yields

X-x + AA(x)(X -x + A(A(x) - A(x))x.

Since x x e By(r,#P) and A(x) e N(X,B) this implies

(1 - XB)lx - xlX 4 Is - -iX + I(ACx) - A(x))xlXx x

z - ZIx+ AU Ox - xl xi 4 *z -zi + AP Ix - Xl(I¥+ r)
X A X Y I A Y

and rearranging this proves Lemma 4.

By the above, the convergence (3.3) takes place in X uniformly in t and the limit u

is Lipschitz continuous. Since the values of uX are bounded in Y (they lie in sy(r,()),

and Y is reflexive, the limit u therefore takes its values in Y (in fact in By(r,(P)).

Since u is continuous into X it is weakly continuous into Y. Similarly, the convergence

uX to u takes place weakly in Y. Iterating the relations (3.1) we find

ix
uxcix) - - j A(uxAs-xllux)s)ds

0

It is a simple matter, using the above remarks, Wa) and WA), to see that as ix t and

x 0 (e.g., let A - t/i and i + *) the right-hand side above tends to the right-hand side

of

-22-
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t
u(t) - -JA(uWsfU(V)da

0
weakly in X, thus establishing the validity of the integral relation. Observe that

AWuW))Wt is weakly continuous into X - and thus integrable - by the assumptions and the

properties of u. Thus u' + A(u)u - 0 holds strongly &.a. and weakly everywhere. In the

next step we will prove that u is continuous into Y. This will make AWuW))Wt

continuous into X and so u 6 C1(O,T:X].

Stop 3. Continuity into Y

set

(3.17) B() A~u~t)) for 0 4 t 4 T.

where A and u are as above. It follows from (Al) -(A3) that 3(t) satisfies (BI)-

(733). We may take 0 of (Al) for 0 of (B1), WA) and the continuity of u into X and

u(CO,T]) 6 W imply (32) while D(t - P(u(t)) works in (3). We briefly recall Kato's

reasoning concerning this latter point. From the assumptions on A and the properties of u

it follows that

S P(utt))y - S A(u(t))y - A(u(t))S y for y e Y,

and the right hand side of this expression is continuous into X. Thus S1 IP(u(t))y is

% continuous (in t) into X and bounded into Y, hence it is weakly continuous into Y and then

% P(u(t))y is weakly continuous (and therefore strongly measurable) into X. Since Y is

dene is X, Plu(t)) is strongly measurable. *

We want to show next that the scheme (3.1) and

Yi - + A(u(i))y~ 0, i1 1,...,N,

(3.18)

are equivalent. More generally, let us argue that if (tes) e A -((tes)l 0 a s t IC TI

and

I %



n -1V lt,s) - j (I1 + A Ml'k- 1 1
k-m

U. U ( t , j ) - ( I + ) A ( u ( k X ) ) )tAt) k-m

4 when (m-1)A 4 a < mA, and (n-1)A < t 4 nA, then

(3.19) IVA(t,s)Iz , |UA(t,s)l Z (C 1  for Z e {x,Y)

and

(3.20) li VA(t,s)x - U(t,s)x for x e x
O,

in X uniformly on A where

a(3.21) U(t,s)x - lim UX(t,s)x
X+O.°4'

exists by Section 2 and the fact that 8(t) satisfies (BI)-(B3). We now adopt the

convention that the Ci's are constants estimable in terms of the data. The first estimate

of (3.19) is proved just like the second, and this is part of the proof of Theorem 2. It -

suffices to consider the case s - 0, as the general case is entirely similar. Assume that

(3.1) and (3.18) hold, but allow x0 - y0  x to be an arbitrary element of Y (and not

necessarily u(0)). Writing'(3.18) as

Yi- Yi-1 4
+ A l i i - (A(x 11  - A u t y

and using (3.1) and the accretivity of A(xi.) + B1 yields

Ixi- YiIx 4 (1-AB) 1 (Ixi-1 - yi I X + XI(A(xi 1 - A(u(ti))yi Ix)

• e 2 ( I x - 1 - - 1X 2JA IX i- 1 u (t i ) IX y i Y )  
'4 e 2X (Ixt- y Il +AC21xl xi 1X ulti l)"I i-

Iteration yields ,xi  - i x 20(T +_ X) 
: '

.71 - I e + C3 TIxI ¥ max IXk_ 1  u(tk)Ix

and then, since uX converges uniformly to u, we conclude that UX(t,O)x - VX(t,O)x 0 in X

uniformly as desired.

-24-
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It is now established that ult) - U(t,0)V is the solution of u' + B(t)u - 0 produced

in Section 2, and so u e C[o,T-Y]rCI[oT:X] and u'(t) + A(u(t))u(t) - 0 by the results of

Section 2.

Step 4z Convergence in Y
e

We now assume (A4). We will be considering four families of functions: The functions

ux whose values xi are given by (3.1), the functions w X  SuX whose values wi satisfy

i-1+1

(3.22) A(xi 1)wi + P xi l)w - 0, i 1 ..... N,

w 0 = Sp,(

the functions zx whose values zi satisfy

z i - "i-I
- X + A(xi1 )Xi + P(u(i))Su(iA) = 0, i I. N,

(3.23) iii"

20 . -S,

and the functions vA - s'lz)L whose values vi satisfy

qv

vi -v~ -illul~1p

(3.24) + A(Xi 1 )vi+ S P(u(iX))Su(i)-p(x . )Svi 0 for i1l,..,N,

9 v0 -p.

Concerning these we claim several things. First, it is obvious that ux converges in Y

exactly when w converges in X. Since we cannot show the convergence of the wX directly,

we begin by observing that zA satisfies

t
(3.25) lir zX (t) U(tO)S - j Uts)P(u(s))Su(s)ds,

X+,O 0

in X where U(t,s), given by (3.21), is the evolution generated by -B(t) = -A(u(t)). The

relation (3.25) holds in X uniformly in t, because of arguments like that sketched in the

proof of Corollary I in Section I together with (3.20) and (3.23), the convergence of the 0

function whose value on 11i-11),iX1 is P(u(i))Su(iA) to Plu(t))u(t) - which follows inI. turn from (A4) and the continuity of u into Y and of Su(t) into X from Step 3. Second,

-25-

% 1, % I

% ? % % a
. .? .~%



'ft/ - - ---- -°.+

7- 7

(3.26) lim vx(t) - ult) 0

holds in X. The reasoning here parallels the corresponding arguments which led to

(2.26). Indeed, from (3.1) and (3.24) we deduce that

(1-AO)lvi-xilY 4 IVil-xi 1 I Y+ AP(u(ik))Su(iA)-P(xi.I)SviIx

4 IV~ -C 1Ij+ )XICP(u(i)))P(xi )))Su(ik) + P(xii)s(u(iX)-vi)Ix

(-I -I Yl -xI I- +XC (lCxv
and then, using (A4) and letting C denote a bound on utI y and Iv I y, we find

(1-Xe)l iv-xi1 iV ~-Xi~ Iy+XCUp luMO -vi_ Iy+IV ~-Xi 1 Iy) +

+ t Cflu(i))-vil.

The rest of the proof of (3.26) is essentially the same as that of (2.26) and is left to

the reader. At this point we have identified lim z\ with Su(t). One can then show, using

(3.22) and (3.23), that

(1 - Xe)z i- wiIx I il ,-wilIx + ).ypIzi - Sulix)lx +

+PIpC(Wl-Zil 1 Ix + Izi_- Sulix)

Iterating this inequality and using the uniform convergence of zX to Su establishes 0

lim(w - zA)(t) - 0

in X uniformly in t in the same way as established (2.27) in Seicion 2, and the proof is

complete.

Remarks on Generalizations.

The problem

+ A(u)u f(u),

(3.27)

u(O) - ,

generalizes (1) and is in turn generalized by

-26-
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du + A(t,u)u - f(t,u),
dt

(3.28) 0
u(O) - p.

The methods of this paper succeed, under appropriate assumptions, in the generality of

(3.28). However, these methods do not entirely subsume the t-dependence in either A or f

assumed in Kato's original works. Roughly, the conditons on the t-dependence are required

to be more uniform in u than Kato needs (but are otherwise quite general). We will not

discuss this point further here - see, e.g., [5] and (6]. Instead, let us indicate the

situation with respect to (3.27). Kato used the following two conditions on fs

f maps W into a bounded subset of Y and there is a constant of such

(fl) that for every u, u 0 W we have

If (u) - f (u)I 1t I u I

and

There is a constant of such that for every u, u W W we have
(f2)

Iflu) - f(u)I~ 44I l u - uEl

The following modification of Theorem 1 is true and has essentially the sas proofs If * 4

X), (8), (A1), Wh2), (A3) and (f1) hold, the difference scheme in 1.1) is replaced by

-' xi - xi. ,
i + Ax i)xi - M

and 1.4) by the equation of (3.27), then the assertions proceeding (1.4) remain true. ifa.4-

also (A) and f2) hold, then the convergence holds in Y uniformly on EO,T].

Remark. Results completely analogous to the above can be proved for the fully implicit

approximation

vx(t) - v (t-X) S
+ A(v(t))v (t) - 0 for t > 0,"

vA(t) - 0 for t (0. 0.

in place of the semi-implicit scheme (2). 
--
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Remark. One can play a bit with the assumptions on P(u). For example, it is enough to

require u + P(u) to be continuous into the strong operator topology from the X topology on

W in order to assert the convergence in Y. (However, this does not seem a good assumption

from point of view of applications.)
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Section 4. Continuity with Respect to Data

In this section we state and prove a result of 18] concerning the continuous

dependence of the solution of (1) as an element of C(O,TsY] on the data. dothing now .

proved in the process and we include this section primarily to indicate how one might

prove such results in the current setting. To formulate the result, we consider a

sequence of equations

du n(un)u -f(u), n- .

+ A n n1. a

(1)
n  -

u n(0) n

where n - is explicitly allowed. We assume

&n and fn satisfy (Al) - (M) and (fl) - (f2) with the same

(4.1)
X, Y, , W and constants independent of n - 1,2 ..... .

The result is:

Theorem 3. Let (4.1) hold. Moreover, for each w 6 W let

(M) An(w) - A"(w) strongly in B(XY) as n * -.

n
(4.2) (n) P W P(w) strongly in 9(X) as n * -.

(ii) fn(w) f (w) in Y as n * -.

If On 0 V for ni-1,...,e and On p' as n * e, then there is a T > 0 such that the

solution of (1 )n constructed in Section 3 satisfies un e C[O,TaY]nC
1 [0,T.X] (i.e., the

interval of definition of un includes (0,T]) for n - 1,2,...,. Moreover,

un . u m in Y uniformly on [0,T].

Remark. Theorem 3 shows, in particular, that u depends continuously on 0 in the Y norm.

Proof of Theorem 3.

For simplicity (and of necessity, since we did so before) we assume that fn - 0. The

existence of T and un as in the statement of the Theorem is an immediate consequence of

Theorem 1, (3.4) and the assumption that On + (rq.
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We need the following lemma.

Lemma 5. Let Un~t,s) correspond to Anand qi'for n = ,., as U corresponded to A and lp

in (3.21). Let x e x. Then

*.1 j~n
(4.3) lia U" Ct,s)x -U (t,s)x in X uniformly on A.

We continue with the proof of Theorem 3 and then we prove the lemma. In Step 4 ofja

the demonstration of Theorem 1 we established that

% t
Su Ct) -Un(t,0)Sqp I Un(t's)PnCun(s))Sun Cs)ds for n I ...

if we subtract the nth and *th equations and use the triangle inequality several times we

can obtain

unt) - t) C e 20T 1 n T-0 I(U n too)- UM~l)S' + %

t

+ e IN IP"u Cs))Su Cs) - P"(u'*s))Su'(s) I Xdo +
0

2+ e y+CJIunCs) _ uel(s) ( +C do
0

n n
where eis given by' (3.5), y is the bound on EP (w)I and C =Y~bound on Neu Wt) 1)X

Using Lemma 5, (4.2)(11) and (r *q in Y we see that all the terim on the right hand side

above except the last one tend to zero as n *.Elementary estimates complete the proof.

* Sketch of Proof of Lemma 5. This result is follows from those in E5), but we sketch the

proof here in this context for completeness. Since Y is dense in X and (Al) - (A4) hold

with constants uniform in no tin is bounded in BCX) and it suffices to check (4.3) for

x e Y. To this end, we note (with the obvious notations) that

(4.4) has uCt M u Wt in X uniformly for 0 4 t 4 T and n 1.. .
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This is evident from Step 2 in the proof of Theorem 1. In addition, one can easily check

that

(4.5) lim u It) ut) in X uniformly for 0 4 t 4 T.
nN

for small X > 0. Using (4.4) and x 6 Y, the proof of Theorem I adapts to show that

0(4.6) lrn VX(ts)x - U Cta)x in X uniformly in (ts) e A end n.

Finally, a straightforward estimate shows that

IV (ts)x - VO(t,.)Xt x Const.sup (,u'(u) - (0' +

(4.7)
Vn

+ sup (Anl(u(M) - A'lu')llV lt,sl

and the right hand side can be made small for fixed X > 0 by choosing n large. (Recall

that every function subscripted by X has finitely many values, (4.5) and (4.2)(1).) But

then (4.5), (4.6) and (4.7) together yield (4.3).
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